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Abstract

Paramagnetic metal ions with fast-relaxing electronic spin and anisotropic susceptibility tensor provide a rich source of struc-
tural information that can be derived from pseudo-contact shifts, residual dipolar couplings, dipole–dipole Curie spin cross-cor-
relation, and paramagnetic relaxation enhancements. The present study draws attention to a cross-correlation effect between
nuclear relaxation due to anisotropic chemical shielding (CSA) and due to the anisotropic dipolar shielding (DSA) caused by
the electronic Curie spin. This CSA·DSA cross-correlation contribution seems to have been overlooked in previous interpreta-
tions of paramagnetic relaxation enhancements. It is shown to be sufficiently large to compromise the 1/r6 distance dependence
usually assumed. The effect cannot experimentally be separated from auto-correlated DSA relaxation. It can increase or decrease
the observed paramagnetic relaxation enhancement. Under certain conditions, the effect can dominate the entire paramagnetic
relaxation, resulting in nuclear resonances narrower than in the absence of the paramagnetic center. CSA·DSA cross-correlation
becomes important when paramagnetic relaxation is predominantly due to the Curie rather than the Solomon mechanism. There-
fore the effect is most pronounced for relaxation by metal ions with large magnetic susceptibility and fast-relaxing electron spin. It
most strongly affects paramagnetic enhancements of transverse relaxation in macromolecules and of longitudinal relaxation in
small molecules.
� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Enhanced relaxation of the nuclear spins surrounding
a paramagnetic center constituted of one or several un-
paired electrons presents one of the most obvious man-
ifestations of paramagnetism [1]. The relaxation
enhancement strongly depends on the distance between
the nuclear and the electron spin. Since the effect can
be observed for significantly longer distances than inter-
nuclear interactions, the measurement of paramagnetic
relaxation enhancements (PRE) provides an attractive
way of accessing long-range distance information be-
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tween nuclear spins and paramagnetic centers. Conse-
quently, paramagnetic compounds and metal ions have
found wide-spread use as sources of long-range distance
restraints for structure determination of molecules in
solution [2,3], as indicators of stable or transient inter-
molecular contacts in molecular biology [4–8], enzymol-
ogy [9], drug discovery [10–14], and organic catalytic
synthesis [15–17], and as probes to study the binding
of non-magnetic ions like magnesium or calcium to
receptors [18–21]. In the presence of other, non-para-
magnetic sources of nuclear relaxation, such as dipole–
dipole and CSA relaxation, the net paramagnetic
relaxation enhancement is usually determined as the dif-
ference in total relaxation rates between paramagnetic
and diamagnetic molecules, i.e., in the presence and ab-
sence of the paramagnetic center.
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With regard to NMR studies in solution, paramag-
netic centers fall into two different classes. Nitroxide
radicals and metal ions like Cu2+, Mn2+ or Gd3+ have
an isotropic or, as in the case of Cu2+, nearly isotropic
magnetic susceptibility [22]. Combined with the absence
of low-lying excited states, these paramagnetic centers
are characterized by slowly relaxing electronic spins
which affect the surrounding nuclear spins through a
dipolar (‘‘Solomon’’) mechanism [23].

The second class comprises metal ions with fast-relax-
ing electron spins [22]. The fast modulation of the sto-
chastic dipolar interaction between electron and
nuclear spins results in smaller PRE effects for the nucle-
ar spins. Such paramagnetic centers are thus more com-
patible with high-resolution NMR spectroscopy. In
addition, they usually possess anisotropic magnetic sus-
ceptibilities which generate pseudocontact shifts and
cause an alignment of the molecule with respect to the
external magnetic field [24]. Efficient electronic relaxa-
tion combined with a large Zeeman splitting creates a
net magnetic moment (Curie spin) in thermal equilib-
rium. Interaction of the Curie spin with nuclear spins
constitutes an additional mechanism of nuclear relaxa-
tion [25,26]. It has been noted that the functional form
of Curie-spin relaxation is analogous to that of CSA
[27,28]. This similarity was further emphasized by Ber-
tini et al. [29] who pointed out that the Curie contribu-
tion can be viewed as an effect originating from the
anisotropy of the dipolar shielding (DSA) caused by
the electronic susceptibility at the site of the nucleus.

The enhancement of longitudinal and transverse nu-
clear relaxation is inversely proportional to the sixth
power of the proton–electron distance for both Solomon
and Curie-spin relaxation mechanisms. Therefore, the
simultaneous presence of both mechanisms presents no
impediment to the measurement of experimental dis-
tances. Deconvolution of the individual contributions
requires the accurate knowledge of the electronic and
molecular correlation times [22].

Unlike Solomon relaxation which depends on the
electronic spin relaxation, Curie relaxation like diamag-
netic relaxation mechanisms is caused exclusively by the
rotational reorientation of the molecule, resulting in cor-
related spectral densities with respect to the diamagnetic
relaxation. Cross-correlated relaxation between the Cur-
ie spin and the dipole–dipole interaction between two
nuclear spins is a well-studied phenomenon [28,30–34].
It results in differential line broadening of the doublet
components observed for two scalar-coupled nuclear
spins.

To the best of our knowledge, the effects of cross-
correlation between Curie and CSA relaxation have
never been assessed. The present paper examines their
relevance for determination of electron–nucleus dis-
tances by measurements of paramagnetic relaxation
enhancements.
2. Theory

The evolution of the density matrix can be described
by

d

dt
ri ¼ �ixiri þ

X
j

Ci;jðrj � req
j Þ; ð1Þ

where ri are the matrix elements of the density operator,
req
i their corresponding equilibrium values and xi their

oscillation frequencies [35]. The elements of the relaxa-
tion supermatrix Ci, j are functions of the Hamiltonian
terms Hl responsible for relaxation, where l identifies
a particular relaxation mechanism. The elements of the
relaxation supermatrix can readily be calculated when
each of the Hamiltonian terms is decomposed into a
sum of products, involving an interaction constant nl,
a spin part (consisting of rank 2 irreducible spin tensor
operators T l

2;q), and a spatial part (usually the second-
order spherical harmonics Y l

2;q); this latter term reflects
the time-dependent orientation Xl (t) of the principal
axes of the interaction tensor [36]

HlðtÞ ¼ nl �
Xþ2

q¼�2

ð�1Þq � Y l
2;�qðXlðtÞÞ � T l

2;q: ð2Þ

The elements Ci, j of the relaxation supermatrix can then
be expressed as

Ci;j ¼
X
l;l0

Cl;l0

Bi;Bj

¼
X
l;l0

X
q

1

2
Bj T l

2;�q; T l0

2;q;Bi

hh i��� iD E
Jl;l0 ðxqÞ; ð3Þ

where Bi are orthonormal basis spin operators of the
Liouville space and Jl;l0 ðxqÞ are the spectral density
functions of the molecular motions, defined as the real
part of the Fourier transformed correlation function

nlnl0Y
l
2;0ðXlðt � sÞÞY l0

2;0ðXl0 ðtÞÞ
D E
J l;l0 ðxÞ¼Re

Z 1

�1
e�ixs nlnl0Y

l
2;0ðXlðt� sÞÞY l0

2;0ðXl0 ðtÞÞ
D E

ds:

ð4Þ

In the absence of contact interaction between nuclear
and electronic spins, the most important components
of the Hamiltonian H describing nuclear spin relaxation
are due to dipole–dipole (DD) interactions between the
nuclear spins, the Solomon (S) mechanism, chemical
shielding anisotropy (CSA), and dipolar shielding
anisotropy (DSA)

H ¼ HDD þ HS þ HCSA þ HDSA: ð5Þ

Table 1 presents explicit expressions for these terms in
the situation, where a spin I is scalar coupled to a spin
K (both nuclei with spin 1/2) and the I spin relaxes
due to CSA (in the following assumed to be axially sym-
metric), nuclear dipole–dipole interactions and interac-



Table 1
Components of the Hamiltonian and relaxation rates describing the relaxation in a spin system composed of two nuclear spins 1/2 and and an electronic spina

Hl ¼ nl
Pþ2

q¼�2ð�1ÞqY l
2;�qT

l
2;q Correlation time sc Auto-correlated contributions to R1 and R2

l Interaction constant nl Spin parts T l
2;q

DD [36] nDD ¼ �
ffiffiffiffiffiffi
24p
5

q
l0
4p

� � �hcI cK
r3 T 2;0ðI;KÞ ¼ 1ffiffi

6
p ½3IzKz � ðI � KÞ� sc = sr RDD

1 ¼ 1
48p n

2
DD

sc
1þðxI�xK Þ2s2c

þ 3sc
1þx2

I s
2
c
þ 6sc

1þðxIþxK Þ2s2c

� �
T 2;�1ðI;KÞ ¼ � 1

2 ½I�Kz þ IzK�� RDD
2 ¼ 1

96p n
2
DD 4sc þ sc

1þðxI�xK Þ2s2c
þ 3sc

1þx2
I s

2
c
þ 6sc

1þx2
K s

2
c
þ 6sc

1þðxIþxK Þ2s2c

� �
T 2;�2ðI;KÞ ¼ 1

2 I�K�

S [22] nS ¼ �
ffiffiffiffiffiffi
24p
5

q
l0
4p

� � �hcI cS
r3 T 2;0ðI; SÞ ¼ 1ffiffi

6
p 3IzSz � I � Sð Þ½ � 1

sc
¼ 1

se
þ 1

sr
RS
1 ¼ 1

48p n
2
S

sc
1þðxI�xS Þ2s2c

þ 3sc
1þx2

I s
2
c
þ 6sc

1þðxIþxS Þ2s2c

� �
T 2;�1ðI; SÞ ¼ � 1

2 ½I�Sz þ IzS�� RS
2 ¼ 1

96p n
2
S 4sc þ sc

1þðxI�xS Þ2s2c
þ 3sc

1þx2
I s

2
c
þ 6sc

1þx2
Ss

2
c
þ 6sc

1þðxIþxS Þ2s2c

� �
T 2;�2ðI; SÞ ¼ 1

2 I�S�

CSA [36] nCSA ¼
ffiffiffiffi
8p
15

q
cIB0DrCSAI T 2;0ðIÞ ¼ 2ffiffi

6
p Iz sc = sr RCSA

1 ¼ 1
4p n

2
CSA

sc
1þðxI scÞ2

� �
RCSA
2 ¼ 1

24p n
2
CSA 4sc þ 3sc

1þðxI scÞ2

� �
DSA [29] nDSA ¼

ffiffiffiffi
8p
15

q
l0
4p

� � cIB0l2Bg
2
eSeðSeþ1Þ

r3kT ¼
ffiffiffiffi
8p
15

q
cIB0DrDSA

I T 2;�1ðIÞ ¼ � 1
2 I� RDSA

1 ¼ 1
4p n

2
DSA

sc
1þðxI scÞ2

� �
RDSA
2 ¼ 1

24p n
2
DSA 4sc þ 3�sc

1þðxI scÞ2

� �
ESA nESA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2CSA þ n2DSA þ 2P 2ðcos hÞnCSAnDSA

q
T2,±2 (I) = 0 RESA

1 ¼ 1
4p n

2
ESA

sc
1þðxI scÞ2

� �
RESA
2 ¼ 1

24p n
2
ESA 4sc þ 3�sc

1þðxI scÞ2

� �
a The first column provides literature references for each mechanism. cI, cK, and cS are the magnetogyric ratios of the nuclear spins I and K and of the electronic spin S, respectively. xI, xK, and

xS are their respective Larmor frequencies. sc, sr, and se are the effective, the rotational, and the electronic correlation time, respectively. �h is Planck�s constant divided by 2p, l0 is the vacuum
permeability, lB is the Bohr�s magneton, B0 is the magnetic field strength, k is the Boltzmann factor, T is the temperature, DrCSAI and DrDSA

I are the anisotropies of the CSA and DSA tensors of the
nucleus I; ge and Se are the electronic g-factor and spin; their values are replaced by gJ and J for lanthanides. r denotes the distance between spins I and K for the dipole–dipole mechanism, and the
distance between spins I and S for the Solomon and DSA mechanisms.
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tions with an electronic spin (assumed to be of isotropic
magnetic susceptibility viso), using the form of Eq. (2).
The table clearly shows that the transformation proper-
ties of the Solomon effect are analogous to those of the
DD effect. Furthermore, the relaxation contribution of
the DSA is of a similar functional form as that of the
CSA, if one defines the anisotropy of the dipolar shift
tensor of a nucleus I [29] as

DrDSA
I ¼ 3viso

4pr3
¼ l2

Bg
2
eSe Se þ 1ð Þ
r3kT

; ð6Þ

where lB is Bohr�s magneton, k the Boltzmann factor, T
the temperature, ge and Se are the electronic g-factor
and spin number, respectively, and r is the distance be-
tween the nuclear and the electronic spin. In the case
of lanthanides, ge and Se would be replaced by gj and
J, respectively. The DSA is the anisotropy of the rank
2 irreducible component rDSA

I of the dipolar shift tensor.
DrDSA

I denotes the DSA in the case of an axially sym-
metric rDSA

I tensor. DrDSA
I is non-zero irrespective of

the symmetry of the metal susceptibility v. In the case
of isotropic magnetic susceptibility, the spatial average
of the dipolar shift tensor (the pseudocontact shift dPCS)
vanishes and rDSA

I is axially symmetric. In the case of
anisotropic magnetic susceptibility, dPCS is non-zero
and rDSA

I non-axially symmetric [29].
The longitudinal and transverse relaxation rates R1

and R2 of the decoupled I spin are determined by the
relaxation-supermatrix elements Ci;j ¼ CIz;Iz and
Ci;j ¼ CIþ;Iþ , respectively [35]. Calculation of these terms
requires the evaluation of all possible auto (l = l 0) and
cross-products (l „ l 0) between the terms of the Hamil-
tonian in Eq. (5). As the correlation time of the Solomon
relaxation mechanism is different from the correlation
time characterizing the dynamics of the molecule, HS

does not correlate with the rest of the Hamiltonian.
Cross-correlations between HDD and HCSA [37] and be-
tween HDD and HDSA [28] result in different relaxation
rates for the doublet components of spin I, but they
do not affect the auto-relaxation rates R1 and R2 of
the I spin and can be eliminated by decoupling.

In contrast, HCSA and HDSA have identical spin parts
and affect both lines of the I-spin doublet in the same
way, so that cross-correlation between these two mech-
anisms contributes to the auto-relaxation rates similarly
Fig. 1. Schematic representation of the shielding tensors involved in nuclear r
and DSA (B) tensors combine into an effective shielding anisotropy (ESA) ten
axially symmetric. e indicates the position of the paramagnetic center locate
as RDD
1;2 , R

S
1;2, R

CSA
1;2 , and RDSA

1;2 . This result is completely
analogous to the situation of CSA relaxation, where
the relaxation by a non-axially symmetric shielding ten-
sor can be decomposed into the effects from two axially
symmetric tensors and a cross-correlation term which
affects both lines of a doublet equally [37]. In the case
of isotropic molecular tumbling (described by a rota-
tional correlation time sr) and axially symmetric CSA
and DSA tensors, the corresponding spectral density is

JCSA�DSAðxÞ¼ 1

24p
nCSAnDSAP 2ðcoshCSA;DSAÞ sr

1þ xsrð Þ2

 !
;

ð7Þ
where P2 is the second-order Legendre polynomial
[P2(x) = (3x2 � 1)/2] and hCSA,DSA is the angle between
the principal axes of the CSA and DSA tensors. The
resulting effect on the longitudinal and transverse relax-
ation rates of the I spin is therefore:

RCSA�DSA
1 ¼ 1

4p
2nCSAnDSAP 2ðcoshCSA;DSAÞ
� � sr

1þðxIsrÞ2

 !
;

ð8Þ

RCSA�DSA
2 ¼ 1

24p
2nCSAnDSAP 2ðcoshCSA;DSAÞ
� �

4srþ
3sr

1þ xIsrð Þ2

 !
:

ð9Þ

These terms share the functional form of the CSA and
Curie-relaxation rates RCSA

1;2 and RDSA
1;2 (Table 1). There-

fore, it is possible to combine the relaxation contribu-
tions by the CSA and DSA mechanisms into a new
relaxation term governed by an effective shielding
anisotropy (ESA) which is obtained by the sum of the
CSA and DSA tensors (Fig. 1). The interaction constant
of the ESA tensor resulting from the combination of the
two tensors is

nESA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2CSA þ n2DSA þ 2P 2ðcos hCSA;DSAÞnCSAnDSA

q
:

ð10Þ
The final expressions for the auto-relaxation rates
become

R1;2 ¼ RDD
1;2 þ RS

1;2 þ RCSA
1;2 þ RDSA

1;2 þ RCSA�DSA
1;2

¼ RDD
1;2 þ RS

1;2 þ RESA
1;2 ; ð11Þ
elaxation in an isotropically tumbling paramagnetic molecule. CSA (A)
sor (C). For simplicity, the CSA and DSA tensors were assumed to be
d at a distance r from the nuclear spin.
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Å

fr
o
m

th
e
io
n
at

29
8
K

an
d
at

m
ag

n
et
ic
fi
el
d

s e
va

lu
es

u
se
d
fo
r
th
e
la
n
th
an

id
es

ar
e
th
o
se

re
p
o
rt
ed

fo
r

Communication / Journal of Magnetic Resonance 171 (2004) 233–243 237
where

RESA
1 ¼ RCSA

1 þ RDSA
1 þ RCSA�DSA

1

¼ 1

4p
n2ESA

sr
1þ ðxIsrÞ2

 !
; ð12Þ

RESA
2 ¼ RCSA

2 þ RDSA
2 þ RCSA�DSA

2

¼ 1

24p
n2ESA 4sr þ

3sr
1þ ðxIsrÞ2

 !
: ð13Þ

In the case of non-axially symmetric CSA or DSA, the
relaxation rates can be calculated, in principle, in the
same way, decomposing the anisotropic tensors into
axially symmetric tensors and evaluating all pairwise
interferences according to Eq. (7) [37].
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3. Results and discussion

The contribution of the CSA·DSA cross-correla-
tion rate RCSA�DSA

1;2 to the R1 and R2 relaxation rates
of a nuclear spin I depends on the distance r between
the nuclear and electronic spin and on the relative ori-
entation of the CSA and DSA tensors. In the case of
axially symmetric CSA and DSA tensors

RCSA�DSA
1;2 / nCSA � nDSA � P 2ðcos hCSA;DSAÞ

/ c2I B
2
0Dr

CSA
I DrDSA

I � P 2ðcos hCSA;DSAÞ

/ P 2ðcos hCSA;DSAÞ
r3

; ð14Þ

where cI is the magnetogyric ratio of nucleus I, B0 is the
magnetic field and DrCSA

I and DrDSA
I denote the aniso-

tropies of the CSA and DSA tensors of nucleus I,
respectively. This cross-correlation effect is propor-
tional to the inverse of the third power of the nu-
cleus–electron distance reI and modulated by the angle
hCSA,DSA between the principal axes of the CSA and
DSA tensors. In the case of isotropic magnetic suscep-
tibility, the principal axis of the DSA tensor coincides
with the nucleus–electron vector.

Notably, the CSA·DSA cross-correlation effect is
not eliminated by subtracting the contribution of the
diamagnetic CSA from that of the effective shielding
anisotropy (ESA) resulting from the superposition of
CSA and DSA tensors. This has important implications
for the measurement of distances between nuclear spins
and paramagnetic centers, when the CSA of the nuclear
spin and the DSA originating from the paramagnetic
center are significant.

Paramagnetic relaxation enhancements are usually
measured as the difference of the nuclear relaxation rate
measured in the presence of the paramagnetic center
and the corresponding relaxation rate measured for a
diamagnetic reference. This procedure, however, yields
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the sum of all auto-correlated paramagnetic relaxation
rates and any contribution from CSA·DSA cross-cor-
relation which is indistinguishable from the auto-corre-
lated term.

Table 2 shows the relative contribution of the Solo-
mon and Curie mechanisms to longitudinal and trans-
verse nuclear relaxation rates, at different fields and
molecular tumbling rates, for a selection of metal ions
(low-spin and high-spin Fe3+, Ce3+, Yb3+, and Dy3+)
with different isotropic susceptibilities viso and electronic
relaxation times se. CSA·DSA cross-correlation can
play a significant role only when the nuclear relaxation
is driven predominantly by the interaction with the Cur-
ie spin rather than by the Solomon or other relaxation
mechanisms. The effect is thus restricted to paramag-
netic relaxation caused by unpaired electrons with fast
electronic relaxation times. Its impact strongly depends
on the molecular motional regime and is different for
transverse and longitudinal magnetization [22,38].
3.1. Transverse relaxation

Fig. 2 shows how the contribution of CSA·DSA
cross-correlation to transverse relaxation modulates
the simple distance dependence which governs the Curie
auto-correlated term

RDSA
2 / n2DSA / 1

r6
: ð15Þ

The calculations were performed for the case of Dy3+

which possesses the largest magnetic susceptibility
among the paramagnetic ions used in NMR. Fig. 2A
shows that the CSA·DSA cross-correlation effect alters
the total paramagnetic relaxation enhancement Rp

2 most
Fig. 2. Geometrical dependence of the paramagnetic contribution to transv
paramagnetic relaxation-rate enhancement is plotted as a function of the pro
CSA and DSA tensors, assuming axially symmetric CSA and DSA tensors a
B0=14 T, T = 298 K, and DrCSA

I ¼ 15 ppm. (A) Total Rp
2 (dark gray surface) f

Curie relaxation alone (wire-frame surface). (B) Distance dependence of Rp
2 p

line), for different values of the rotational correlation time sr (0.1, 1, 5, and 2
using se = 2.40 · 1013 s; it is therefore independent of the rotational correlatio
contribution is indicated by a gray solid line.
significantly for h = 0� and 90�, whereas Rp
2 is identical

to RDSA
2 for h = 54.7� and 125.3�, as expected on the ba-

sis of Eq. (14). In the case of negative CSA, the sign of
the CSA·DSA interference term is reversed, resulting in
lesser relaxation enhancement for h = 0� and increased
relaxation enhancement for h = 90�.

In contrast to the Solomon mechanism, the Curie ef-
fect on transverse relaxation rates increases with increas-
ing rotational correlation time. In the case of Dy3+,
transverse nuclear relaxation is predominantly enhanced
by the Curie mechanism even at rotational correlation
times as short as tens of picoseconds, whereas the Solo-
mon mechanism plays a much lesser role (Fig. 2B, Table
2). The modulation arising from RCSA�DSA

2 also increases
with the rotational correlation time. To assess the prac-
tical importance of the effect, we assumed a chemical
shielding anisotropy characteristic of amide protons
(DrCSA = 15 ppm) [39]. Dashed and dotted lines in
Fig. 2B indicate the maximum positive (hCSA,DSA = 0�)
and negative (hCSA,DSA = 90�) correction due to the
cross-correlation term relative to the situation of
RCSA�DSA
2 ¼ 0 obtained at hCSA,DSA = 54.7�. The results

show that the relative contribution from the CSA·DSA
cross-correlation effect may be neglected for small mol-
ecules, but it is important at increased rotational corre-
lation times. For example, the relaxation enhancements
observed in the range of 17–20 Å from the metal ion in a
molecule with sr = 20 ns can vary more than 3-fold,
depending on the angle h between the CSA and DSA
tensors. At short distances from the metal ion, the
cross-correlation effect becomes unimportant compared
with the Curie auto-relaxation rate. At these short dis-
tances, however, 1H NMR signals are broadened be-
yond detection. The distance range for which
erse nuclear relaxation, Rp
2 , in a molecule containing a Dy3+ ion. The

ton-electron distance r and of the angle h between the main axes of the
nd isotropic molecular tumbling. The simulations were performed for
or sc = 5 ns compared with the contribution RDSA

2 from auto-correlated
lotted at h values of 54.7� (solid line), 0� (dashed line), and 90� (dotted
0 ns). The contribution from the Solomon mechanism was calculated
n time for the motional regimes considered in the panel. The Solomon
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relaxation enhancements can readily be measured is also
the range where the cross-correlation term is significant.

For most h angles, the CSA·DSA cross-correlation
effect enhances paramagnetically driven relaxation be-
yond the value predicted for Curie relaxation alone
(Fig. 2B). The effect is particularly pronounced in the
situation, where the CSA and DSA tensors are collinear
(dashed lines in Figs. 2B and 3A). Interestingly, how-
ever, for certain other relative orientations of the CSA
and DSA tensors, the CSA·DSA cross-correlation ef-
fect cannot only decrease the paramagnetic relaxation
enhancement, but even result in line widths narrower
than for the diamagnetic reference. This ‘‘paramagneti-
cally effected narrowing’’ (PEN) effect occurs when both
tensors are orthogonal with respect to each other
[P2 (cosh

CSA,DSA) < 0] and jRCSA�DSA
2 j > jRDSA

2 þ RSB
2 j.

The CSA·DSA cross-correlation can dominate over
the auto-correlated Curie contribution at longer dis-
tances due to its lesser distance dependence (Table 1).
In principle, the PEN effect exists at any rotational cor-
relation time, but is in practice restricted to macromole-
cules, since long proton–electron distances are required
(Fig. 3A). It requires that the main axes of the CSA
and DSA tensors deviate from orthogonality by no
more than about ±33� (Fig. 3B). For the values of
DrCSA and DrDSA chosen in the example of Fig. 3, it re-
quires a proton–electron distance r greater than 26 Å
and is predicted to be maximum for hCSA,DSA = 90�
and r = 32.4 Å. Even at this optimum, the effect is small
(Rp

2 ¼ �1:4 s�1, corresponding to line narrowing by
about 0.5 Hz) and would be difficult to observe experi-
mentally for a molecule with a rotational correlation
time as assumed in the calculation (20 ns). It may, how-
ever, be more significant for spins for which CSA relax-
ation is the predominant relaxation mechanism in the
diamagnetic state. In physical terms, the PEN effect
can be understood as a mutual compensation of the
anisotropies of chemical shielding (CSA) and dipolar
shielding (DSA), see Fig. 1.
Fig. 3. Paramagnetically effected narrowing (PEN) of 1H NMR resonance
enhancement Rp

2 is shown for the distance range of 20–50 Å in a molecule co
used in the simulation as in Fig. 2. (A) The curves were calculated for h = 5
corresponding to negative values of Rp

2 . The range of negative Rp
2 values is id
The PEN effect described here is fundamentally dif-
ferent from the previously reported ‘‘paramagnetic in-
duced narrowing’’ (PIN) effect [31] which arises from
the cross-correlation effect between the Curie spin and
nuclear dipolar coupling. Whereas the PIN effect is ac-
tive only for single doublet components, the PEN effect
applies to every component of a multiplet as well as to
singlets arising from isolated spins.

The CSA·DSA cross-correlation effect has impor-
tant consequences for the extraction of distance re-
straints from paramagnetic relaxation enhancements.
Usually, Rp

2 values are converted into distance con-
straints rcalc using the relationship

rcalc ¼ kffiffiffiffiffi
Rp
2

6
p ð16Þ

after a calibration procedure to determine the value of
the scaling factor k. Without knowledge of the three-di-
mensional structure and the shape and orientation of the
CSA and DSA tensors, the CSA·DSA cross-correlation
effect cannot be taken into account.

Fig. 4 shows that the CSA·DSA cross-correlation ef-
fect substantially increases the uncertainty of distance
measurement for longer distances for a molecule contain-
ing a Dy3+ ion. The range of rotational correlation times
assumed in the example (sr = 5 and 20 ns) encompasses
most biological macromolecules studied by high-resolu-
tion NMR spectroscopy. It is instructive to compare the
uncertainty generated by the lack of knowledge of the
CSA·DSA cross-correlation contribution to the overall
paramagnetic relaxation enhancement (dashed and dot-
ted lines in Fig. 4) with the error introduced by a dis-
tance-independent uncertainty in the relaxation-rate
measurement of about 3 s�1 which corresponds to an
uncertainty of 1 Hz in line-width measurements (shaded
areas in Fig. 4). In both cases, the uncertainties increase
with increasing proton–electron distance, where the para-
magnetic relaxation enhancement is less pronounced. The
uncertainty introduced by the CSA·DSA cross-correla-
s due to CSA·DSA cross-correlation. The paramagnetic relaxation
ntaining a Dy3+ ion, assuming sr = 20 ns. The same parameters were
4.7� (solid line), 0� (dashed line), and 90� (dotted line). (B) Contours
entified by shading, with the lowest contour line at �1.4 s�1.



Fig. 4. Correlations between metal–proton distances r (horizontal axes) and corresponding values back-calculated from transverse relaxation data
(vertical axes) simulated for a Dy3+ complex using Eq. (15). The plots refer to complexes with rotational correlation times sr = 5 (A) and 20 ns (B).
The Rp

2 values were predicted using Eq. (12), assuming axially symmetric tensors with angles h of 54.7� (solid line), 0� (dashed line), and 90� (dotted
line) between the principal axes. The deviations from linearity introduced by CSA·DSA cross-correlation can be compared with the uncertainty
caused by an experimental error of about 3 s�1 in Rp

2 (shaded areas), corresponding to an uncertainty in line-width measurement of 1 Hz. The
distance range displayed corresponds to Rp

2 values in the range of 200–1 s�1.
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tion effect is particularly detrimental at shorter proton–
electron distances. In the case of sr = 20 ns and for dis-
tances in the range between 20 and 25 Å (Fig. 4B), the
uncertainty caused by the cross-correlation is about 10-
fold larger than that associated with an experimental er-
ror of 3 s�1 in Rp

2 measurements. This fact must be taken
into account whenever paramagnetic ions are used to de-
rive long-range distance restraints in structure determina-
tions of proteins or other biological macromolecules.

Curie and Solomon mechanisms contribute differently
to the overall paramagnetic relaxation enhancements for
Fig. 5. Nuclear paramagnetic relaxation rate enhancements and back-calcu
complexes with (A and E) low-spin Fe3+, (B and F) Ce3+, (C and G) high-s
enhancements Rp

2 were calculated separately for the parts associated with
contribution from the Solomon mechanism, while the contribution originati
line), and 90� (dotted line). Other parameters used were sc = 5 ns, B0 = 14 T,
respective four ions. (E–H) Correlation between the back-calculated 1H–meta
Rp
2 values (using the formula of Table 1). Solomon and Curie auto-correla

relaxation enhancements Rp
2 together with the cross-correlated CSA·DSA c

(dashed line), and 90� (dotted line). The distance range displayed for each ion
areas outline the uncertainty in distance determination arising from an expe
metal ions with different electronic relaxation time, elec-
tronic spin and g-factor (Table 2). Fig. 5 illustrates the
CSA·DSA cross-correlation effect for the metal ions
and spin-states listed in Table 2 other than Dy3+. The
rotational correlation time was assumed to be 5 ns. The
metal ions were sorted by decreasing Solomon contribu-
tion to the overall paramagnetic relaxation enhancement
observed on a proton spin. The series shows that an in-
creased weight of the Solomon mechanism improves the
accuracy of distance measurement, as this decreases the
impact of the CSA·DSA cross-correlation effect.
lated 1H–metal distances as a function of real 1H–metal distances in
pin Fe3+, and (D and H) Yb3+. (A–D) The transverse relaxation rate
Curie-spin and Solomon mechanisms. Broad gray lines identify the
ng from the Curie spin is plotted for h = 54.7� (solid line), 0� (dashed
and T = 298 K. Electronic relaxation times of Table 2 were used for the
l distances (using Eq. (15)) and the real distances used to calculate the
tion terms were included in the calculation of the transverse nuclear
ontribution. Calculations were performed forh = 54.7� (solid line), 0�
corresponds to Rp

2 values between 200 and 1 s�1. As in Fig. 3, shaded
rimental error in the determination of the Rp

2 relaxation rates of 1 s�1.
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3.2. Longitudinal relaxation

Whereas a paramagnetic center in a macromolecule
often broadens the NMR resonances near the paramag-
netic metal ion beyond detection, rapidly tumbling small
molecules experience lesser paramagnetic line broaden-
ing. Paramagnetic enhancements of longitudinal magne-
tization can thus readily be measured also for small
molecules [40,41] and the influence from CSA·DSA
cross-correlation effects on distance measurements can
be significant in practical applications [42].

In contrast to transverse relaxation, longitudinal
relaxation enhancement by Curie-spin relaxation de-
pends on the spectral density at the nuclear frequency,
Fig. 6. Geometrical dependence of the paramagnetic contributions to nuclea
high spin), Ce3+, and Yb3+. The paramagnetic terms are shown as a funct
principal axes of the CSA and DSA tensors, assuming axially symmetric CSA
(dark gray surface) compared with the contribution RDSA

1 from auto-correlat
for the simulation were B0 = 14 T, T = 298 K, and DrCSA

I ¼ 15 ppm. (B and D
(B), Ce3+ (E), high-spin Fe3+ (F), and Yb3+ (G) complexes, plotted for h = 54
different values of the rotational correlation time sr (0.1, 1, 5, 10, and 20 ns); (
associated with the Curie-spin and Solomon mechanisms were calculated sepa
gray lines. The electronic relaxation times of Table 2 were used for the five io
real 1H–metal distances in complexes with (C) Dy3+, (H) low-spin Fe3+, (I) C
h = 54.7� (solid line), 0� (dashed line), and 90� (dotted line), and refer to com
used were B0 = 14 T and T = 298 K. Shaded areas outline the uncertainty
determination of the Rp

1 relaxation rates of 0.1 s�1.
but not the spectral density at zero frequency. As a con-
sequence, the RDSA

1 enhancement is predicted to increase
with increasing rotational correlation times sr to a max-
imum at sr = 0.3 ns (for a 1H Larmor frequency of
600 MHz), decreasing again with longer correlation
times. The Curie relaxation enhancement can thus ex-
ceed the Solomon contribution only for small molecules,
with typical sr values ranging from 0.1 to 1 ns, which are
complexed to metal ions with large magnetic susceptibil-
ities. Among the metal ions listed in Table 2, these
conditions are readily satisfied in the case of Dy3+

(Fig. 6A–C), but not for the other ions (Fig. 6D–K).
The angular dependence of the longitudinal relaxation
enhancement due to DSAxCSA cross-correlation is
r longitudinal relaxation in a molecule containing Dy3+, Fe3+ (low and
ion of the proton–electron distance r and of the angle h between the
and DSA tensors and an isotropically tumbling molecule. (A) Total Rp

1

ed Curie relaxation alone (wire-frame surface). Other parameters used
–G) Distance dependence of Rp

1 for the case of Dy3+ (B), low-spin Fe3+

.7� (solid line), 0� (dashed line), and 90� (dotted line). (B) The results for
D–G) for sr = 5 ns (i) and sr = 0.1 ns (ii). The relaxation enhancements
rately. The contribution of the Solomon mechanism is shown by broad
ns. (C and H–K) Back-calculated 1H–metal distances as a function of
e3+, (J) high-spin Fe3+, and (K) Yb3+. The curves were calculated for
plexes with a rotational correlation times sr = 0.1 ns. Other parameters
in distance determination arising from an experimental error in the
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similar to that of transverse relaxation (Fig. 6A), but the
paramagnetic enhancements RDSA

1 are much smaller
compared with the corresponding RDSA

2 values. The cor-
rections due to the RDSAxCSA

1 term are also much smaller
(Fig. 6B) and appreciable only in the fast-tumbling re-
gime. Even then, the cross-correlation effect will hardly
affect distance measurements, since molecules with short
correlation times are usually not sufficiently big to afford
1H–electron distances longer than 10 Å (Fig. 6C). For
the other metal ions of Table 2, distances derived from
measurements of paramagnetically enhanced longitudi-
nal relaxation are similarly insensitive to the cross-corre-
lation term, with errors resulting predominantly from
experimental uncertainties.
4. Conclusions

Metal ions with fast relaxing electronic spins and
large, anisotropic susceptibilities present a rich source
of long-range structural restraints, including distance
and angular information. Anisotropic susceptibility ten-
sors are a prerequisite for the observation of pseudocon-
tact shifts and molecular paramagnetic alignment in the
magnetic field. In addition, the average susceptibility en-
hances the relaxation rates of the nuclear spins in a dis-
tance-dependent fashion, providing a relaxation
mechanism which is also the source of cross-correlation
effects with nuclear dipole–dipole relaxation and other
relaxation mechanisms. Paramagnetic relaxation
enhancements present a most obvious manifestation of
paramagnetism and are commonly assumed to follow
a 1/r6 distance dependence.

The present simulations show that the presence of
CSA·DSA cross-correlation leads to a far more compli-
cated situation. The effect provides an explanation, why
simple subtraction of the relaxation rates of a diamagnetic
reference from the experimental paramagnetic values of-
ten results in inaccurate distance measurements [43–45]:
this procedure can only compensate for the auto-corre-
lated CSA contribution. The cross-correlation effect can
be of significant magnitude and may, under certain cir-
cumstances, even result in NMR signals which are nar-
rower than in the diamagnetic protein. Clearly, this
would seriously compromise the extraction of distances
from paramagnetic relaxation rate enhancements.

The cross-correlation effect influences in particular
the transverse relaxation rates in slowly tumbling mac-
romolecules and, to a lesser extent, the longitudinal
relaxation rates of rapidly tumbling molecules, when
the molecules contain metal ions with high paramag-
netic susceptibility. In contrast, transverse relaxation
rates in small molecules and longitudinal relaxation
rates in macromolecules are less affected due to a more
predominant Solomon contribution, resulting in a purer
1/r6 distance dependence of the paramagnetic relaxation
enhancement. The problem is confounded by the fact
that auto-correlated DSA and cross-correlated CSA–
DSA effects cannot be separated experimentally.

Quite generally, the effect only occurs, when the nu-
clear relaxation enhancements are predominantly driven
by Curie relaxation, i.e., for metal ions with rapidly
relaxing electronic spins (e.g., Ce3+, Fe3+, Yb3+, Dy3+)
but not paramagnetic centers with slowly relaxing elec-
tronic spins (e.g., Mn2+, Gd3+, nitroxide radicals).
Clearly, the latter ions are more universally applicable
reagents for distance measurements from paramagnetic
enhancements.
Acknowledgments

We thank Prof. Jozef Kowalewski for valuable dis-
cussions and for a critical reading of the manuscript.
G.P. thanks the EU for a postdoctoral fellowship within
the Research Training Network on Cross-Correlation
(HPRN-CT-2000-00092). G.O. thanks the Australian
Research Council for a Federation Fellowship. Finan-
cial support by the Australian Research Council is
gratefully acknowledged.
References

[1] L. Banci, I. Bertini, C. Luchinat, Nuclear and Electron Relaxa-
tion: The Magnetic Nucleus-Unpaired Electron Coupling in
Solution, VCH, Weinheim, 1991.

[2] I. Bertini, C. Luchinat, G. Parigi, Paramagnetic constraints: an
aid for quick solution structure determination of paramagnetic
metalloproteins, Concept Magn. Reson. 14 (2002) 259–286.

[3] L. Banci, I. Bertini, G. Cavallaro, A. Giachetti, C. Luchinat, G.
Parigi, Paramagnetism-based restraints for Xplor-NIH, J. Biomol.
NMR 28 (2004) 249–261.

[4] J.L. Battiste, G. Wagner, Utilization of site-directed spin labeling
and high-resolution heteronuclear nuclear magnetic resonance for
global fold determination of large proteins with limited nuclear
Overhauser effect data, Biochemistry 39 (2000) 5355–5365.
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